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Differentiation is restricted to directions tangent to the surface. Con-
sequently the vector V(M -n) lies in the surface, while the vector
Vv X (n X M) is normal to it. The discontinuities exhibited by the vector
B in its transition through a surface distribution of magnetic moment can
be expressed by the single formula: "

(29) B, —B_ = —u[v(@-M) + VX (2 x M)

INTEGRATION OF THE EQUATION VXV X A = 4)

4.14. Vector Analogue of Green’s Theorem.—The classical treatment
of the vector potential is based on a resolution into rectangular com-
ponents. On the assumption that v -A = 0, each component can be
shown to satisfy Poisson’s equation and the methods developed for the
analysis of the electrostatic potential are applicable. ’

The possibility of integrating the equation V X V X A = uJ directly
by means of a set of vector identities wholly analogous to those of Green
for scalar functions appears to have been overlooked. Let V be a closed
region of space bounded by a regular surface S, and let P and Q be two
vector functions of position which together with their first and second
derivatives are continuous throughout V and on the surface S. Then,
if the divergence theorem be applied to the vector P X V X Q, we have

6)) fVV-(PxVxQ)dv=j;(vaxQ)-nda.

Upon expanding the integrand of the volume integral one obtains the
vector analogue of Green’s first identity, page 165,

) j;(VXPfoQ—P-VXVXQ)dv
=fS(PXYXQ)rnda.

The analogue of Green’s second identity is obtained by an interchémge
of the roles of P and Q in (2) followed by subtraction from (2). Asa

result

3) _I;,(Q-vxvxP—P-vxva)dv
=js'(vaxQ—Q'xvxP)-nda.

4.15. Application to the Vector Potential.—We shall assume that the
volume density of current J(z, ¥, 2) is a bounded but otherwise arbitrary
function of position. The regular surface S bounding a volume V need
not necessarily contain within it the entire source distribution, or even
any part of it. As in Sec. 3.4 we shall choose O as an arbitrary origin
and z = 2/, y = ¢/, z = 2 as a fixed point within V.
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Now let P represent the vector potential A subject to the conditions
@) VXVXA=,], v-A =0,

where u is the permeability of a medium assumed homogeneous and iso-
tropic. The choice of @ may be made in either of two ways. It will
be recalled that in the scalar case the Green’s function y satisfied Laplace’s
equation v% = 0 and could be interpreted as the potential at (z/, ¥/, 2')
due to a charge 4me located at (z, y, 2). Likewise the vectorial Green's

funttion Q may be chosen to represent the vector potential at (z/, y', 2°)

produced by a current of density 4w /u located at (x, y, 2) and directed
arbitrarily along a line determined by the unit vector a.

®) Qe y5,y,) =2 r=VEF-D TG -9 FE I

However the divergence of this function is not zero and consequently
(5) fails to satisfy the condition Vv X vV X Q = 0. On the other hand,
the vector potential arising from a distribution of magnetic moment has
been shown to satisfy V X Vv X A = 0 every where and an appropriate
Green’s function for the present problem is, t¥erefore,

(6) Q=V(%>><a=vx'ir‘~

Obviously (6) may be interpreted as the vector potential of a magnetic
. ‘ 4
dipole of moment — a.

"

Either (5) or (6) may be applied to the integration of (4) but the
necessary transformations turn out to be simpler *n the case of (5) in spite
of the divergence trouble. We have in fact

@ VXQ=V(%) Xa VXVX Q=v[§.v(l)],

r

o povxvxe-asfevl)]-vev()a)

In these transformations and those that follow it is to be kept in mind that
a is a constant vector. The left-hand side of the identity (3) can now
be written ' :

© L{%'J;V-[a-v<%)A]}du |
=a.-_[;‘—1dv—a-L(A-n)V(%)da.



252 THE MAGNETOSTATIC FIELD [CHa®: ¥V

Proceeding to the transformation of the surface integrals, we have

(10) PXVXQ):n= {Ax [v(%) xa]}j.n

1?

=a-+V X (A X n),

r
BXxn
T

y

(11) (QXVXP)'-n=(§Txva)-n=a-

in which B replaces V X A. The identity (3) becomes

(H)KL%M=J;Amwcgw+lLVG>XMana
+ﬁ‘n):Bda

Now the validity of this relation has been established only for regions
within which both P and Q are continuous and possess continuous first
and second derivatives. Q, however, has a singularity at » = 0 and
consequently this point must be excluded. About the point (&, ¥, 2') a
small sphere of radius 7, is circumseribed. The volume V is now bounded
by the surface S; of the sphere and an outer enveloping surface S as
indicated in Fig. 25, page 166. Since V(1/r) = 1%/r2, the surface integrals
over S; may be written

1
7

r°(A n) da + = fr“ (Axn)da-l-—f n X Bda.

The 1ntegra,nd of the middle term is transformed to
(13) X AXn) =(@-nA - (A-n)r°+ A X (1° X n),

and since on the sphere r+n =1, 1° X n = 0, the surface integrals
over S; reduce to

1 M+lfanm

Lk "1 Js
If A and n X B denote the mean values of the vectors A and n X B over
the surface of the sphere, these integrals have the value

A an

4arr2+ drl,

which in the limit as r, — 0 reduces to 4rA(z’, ¥’, z'). Upon introducing
this result into (12) and transposing, we find the value of the vector
potential at any fixed point expressed in terms of a volume integral
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and of surface integrals over an outer boundary which is again denoted
by S.

M)M%%”=§fgﬂﬁ“_%fnx%a

__fmxmxv(}M——fmAw<ﬁa

The proof that the divergence of (14) at the point (2/, %', 2’) is zero
is left to the reader. Clearly the surface integrals represent the con-
tribution to the vector potential of all sources that are exterior to the
surface S. At all points within V, the vector A(z/, ¥/, 2') defined by (14)
is continuous and has continuous derivatives of all orders. Across the
surface S, however, it is apparent from the form of the surface integrals
that A and its derivatives will exhibit certain discontinuities. We shall
show in fact that outside S the vector A is zero everywhere.

The first surface integral in (14) may be interpreted as the contribu-
tion to the vector potential of a surface current

(15) K= —-‘%n X B_,

in which the subsecript of B_ emphasizes that this value of B is taken
just inside the surface S. Now in Sec. 4,12 it was shown that a surface
layer of current does not affect the transition of the vector potential, but
gives rise to a discontinuity in B of amount

(16) n X (B — B.) = uK.
Upon replacing K by its value from (15) it is clear that just outside S
(17) nXB, =0

In like manner the second surface integral is equivalent to the vector
potential of a distribution of magnetic surface polarization of density

(18) M=%LXm

The normal component of A passes continuously through such a layer,
but the tangential component is reduced discontinuously to zero, as we
see on substituting (18) into (17), page 247

(19) nX (Ay—A)=-nXA +[n'@x A)n,
whence
(20) nxA =0,
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The mathematical significance of the last term of (14) is apparent,
but it is difficult to imagine a physical distribution of current or magnetic
moment of the type called for. This is the form of integral which we
have associated with the field intensity of a surface charge of density
(A_ - n), and which leads to a discontinuity i the normal component
specified by

(21) n-Ay —A)=n-A,
ag a consequence of which we conclude that

(22) n-A, =0

Thus far we have demonstrated that on the positive side of the closed
surface S the tangential and normal components of A and the tangential
component of B are everywhere zero. It follows at once, however, that
‘the normal component of B must also vanish over the positive side of S;
for the normal component of the curl A involves only partial derivativesin
directions tangential to the surface. Furthermore, we need but apply
(14) itself to the region external to S to prove that A, and consequently
B, must vanish everywhere. Current and magnetic polarization are
absent outside V, since their effect is represented by the surface integrals.
Then, sirce n X B, n X A, and n - A are all zero, it follows from (14)
that A(2’, ¥/, 2’) must vanish at all points outside S.

When Q = w(1/r) X ais chosen in place of (5) as a Green’s function,
it can be shown without great difficulty that

(23) B, v, 2) = ﬁfvl X V<%> dv —ﬁ‘j;(n X B) X v(%) da

— %L (n. B)V (%) da.

This is the extension of the Biot-Savart law to a region of finite extent
bounded by a surface S. The contribution of currents or magnetic
matter outside S to the field within is accounted for by the two surface
integrals.

BOUNDARY-VALUE PROBLEMS

4.16. Formulation of the Magnetostatic Problem.—A homogeneous,
isotropic body is introduced into the constant field of a fixed and specified
system of currents or permanent magnets. Qur problem is to determine
the resultant field both inside and outside the body. In case the current
density at all points within the body is zero, the secondary field arising
from the induced magnetization can be represented everywhere by a
single-valued scalar potential ¢¥ and the methods developed for the
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treatment of electrostatic problems apply in full. A schedule for the
solution may be drawn up as follows.

The scalar potential of the primary field is ¢f. In case the primary
source is a current distribution ¢ is multivalued but this in no way
affects the determination of the induced field ¢%. The resultant potential
is ¢* = ¢Ff + ¢¥. The permeability of the body will be denoted by u,
and that of the homogeneous medium in which it is embedded by ps.
Then a function ¢¥ must be constructed such that:

(1) v2¢¥ = 0, at all points not on the boundary;

(2) oF is finite and contenuous everywhere tncluding the boundary;

(8) Across the boundary the normal derivatives of the resultant potential
o* satisfy the condition

209 _, (%) _,
Be\lon ). ~ M \Con )~ 7

the subscripts + and — implying that the derivative is calculated
outside or inside the boundary surface respectively. The induced
potential ¥ is, therefore, subject to the condition

dp¥ dof ao¥
#z(%>+—#1 ((.,%)_ = (=) 2 =,

in which f 1s a known function of position on the boundary satisfying
the condition

@) [ifda=0;

(5) At infinity ¢¥ must vanish at least as 1/r%, so that r2¢¥ remains
finile as r— o, for there is mo free magnetic charge and conse-
guently ¢f must vanish as the potential of a dipole or multipole of
higher order.

In case the body carries a current, the interior field cannot be repre-
sented by a scalar potential and the boundary-value problem must be
solved in terms of a vector potential. Such a case arises, for example,
when an iron wire carrying a current is introduced into an external mag-
netic field. The distribution of the current in the stationary state is
unaffected by the magnetic field. Its determination is in fact an electro-
static problem. The vector potential of the primary sources is A, while
the potential of the induced and permanent magnetization of the body
and of the current which it may carry will be denoted by A;. This
function A; is subject to the following conditions:

1) VXV XA =], af points inside the body where the current
densily s J;
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(2) V X V X A; = 0, at all other poinis not on the boundary S;

8) v-A; =0, af all poinis not on S;

(4) A, is finite and continuous everywhere and passes continuously
through the boundary surface (Secs. 4.10 and 4.12);

(5) Across the boundary the normal derivatives of the polential Ar—as
well as those of the total potential A—satisfy

dA 0A;
(a_nl> %> = po(M4 — M) X n,

in which n s the outward normal and where M_ s the polarization
of the body and M., that of the medium just outside the boundary.

Since M, and M_ are determined at least in part by the field itself this
relation is usually of no assistance in the determination of A;. In its
place the customary boundary condition on the tangential components
of the total field must be applied.

6) nxXx (H.—H)=nX (B+ — sz B_) = 0, which imposes a rela~
1

tion between the derivatives of A in a specified coordinate system;
(7) As r— o the product A, remains finite.

4.17. Uniqueness of Solution.—The proof that there is only one func-
tion ¢* satisfying the conditions scheduled above was presented in
Sec. 3.20. A corresponding uniqueness theorem for the vector potential
may be deduced from the identity (2) of page 250. Let us put
P = Q = A and assume first that within ¥V, bounded by S the current
density is zero. Then V X Vv X A = 0 and

1) j;l(va)?dv=—j;A-(nxva)da.

From the essentially positive character of the integrand on the left it
follows that if A is zero over the surface S, then B = V X A is zero
everywhere within the volume Vi. Hence A is either constant or at
most equal to the gradient of some scalar . But since A is zero on §,
the normal derivative 8y/dn is also zero over this surface and it was
shown in Sec. 3.20 that this condition entails a constant value of ¢
throughout Vi Consequently, if A vanishes over a closed surface, it
vanishes also at every point of the interior volume. It is also clear that
the vector function A is uniquely determined in V', by its values on S.
For'if there existed two vectors A; and A, which assumed the specified
values over the boundary, their difference must vanish not only over S
but also throughout V.

The condition V X A = 0, A = Vy, throughout Vi can be estab-
lished also by the vanishing of V X A, or of the tangential vector

* e
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n X v X Aover 8. In this ease, however, it does not necessarily follow
that A is everywhere zero. If the two functions v X A; = B; and
V X A, = B; are identical on 8, then B; and B, are identical at all
interior points and A; and A; can differ at most by the gradient of a
scalar function.

In case there are currents present within ¥V, the vector potential A
is resolved into a part A’ due to these currents and a part A” due to
external sources. The vector A’ is uniquely determined by the current
distribution, while the values of A" or its curl over S determine A" at
all interior points.

The vector potential is regular at infinity and consequently the proof
applies directly to the region V, exterior to S. The vector B is uniquely
determined within any domain by the values of its tangential component
n X B over the boundary. '

PROBLEM OF THE ELLIPSOID

4.18. Field of a Uniformly Magnetized Ellipsoid.—An ellipsoid whose
semiprincipal axes are @, b, ¢ is uniformly and permanently magnetized.
The direction of magnetization is arbitrary, but since the magnetization
vector can be resolved into three components parallel to the principal
axes we need consider only the case in which Mo is constant and parallel
to the g-axis.

In view of the uniformity of magnetization p* = —v .M, = 0 at
all points inside the ellipsoid. The potential ¢* of the magnet is due to a
“surface charge” of density w* = n.M, The external medium is
assumed in this case to be empty space. The problem is now fully
equivalent to that of the polarized dielectric ellipsoid treated in Seec.
3.27. From Egs. (27), (32), and (42) the potential ¢; due to the polariza-
tion P, may be found in terms of P, and the parameters of the ellipsoid.
Upon dropping the factor e; and replacing P, by M, one obtains

* a_bc _ ds
) $2 = o AiMoz, A J; CTF DR

as the magnetic scalar potential at points inside the ellipsoid; at all
external points

« _ Gbc
@ Y [

The field inside the ellipsoid is

) 7y = % -

abe
or T2 ArMo..



